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Abstract—  Data dimensionality refers to the number 
of variables that are measured on each observation. Recent 
trends in technology and applications result in the generation 
of huge volume of high dimensional data. The analysis of 
these data is inevitable for various research and production 
activities. Data analysis focuses on understanding, 
manipulating and interpreting large scale data. Relevant 
information is hidden in this huge volume dataset which 
needs to be extracted for analysis. Several methods have been 
developed in the field of data mining for automated data 
processing. Owing to the huge dimension of data these 
methods fail to meet the requirement efficiently. 
Dimensionality reduction offers an optimal solution to this 
problem by reducing the data dimension. It transforms data 
into a meaningful and reduced dimension space with minimal 
information loss. This reduces the computational cost 
involved in data analysis and founds effective in data 
compression, visualization and big data analysis. Dimension 
reduction is applicable in many real world domains such as 
regression analysis, cluster analysis, computer vision, image 
processing, text categorization and so on. There are various 
classes of dimension reduction techniques such as supervised, 
unsupervised, linear, nonlinear etc. The paper presents a 
concise review of some relevant linear and nonlinear 
dimensionality reduction techniques. 

Keywords— Dimension reduction, PCA, Fastmap, 
LTSA, LaplacianEigenmap 

I. INTRODUCTION 

The computational advancements in various domains 
give rise to new technologies and applications that involves 
huge amount of data. Application domains like bio-
informatics, computer science, astronomy, statistics, remote 
sensing, social network etc. generate high volume of 
heterogeneous data. These data are in turn called as ’Big 
Data’ which is difficult to process using traditional data 
processing methods. Only a certain amount of data 
generated can encapsulate useful information which may 
also contain noise, correlated features etc. Hence it is 
essential to discover the hidden portions of data that are 
significant. The increase in data dimensionality leads to 
increase in demand for processing and storage 
requirements. This problem is called the curse of 
dimensionality. For effective data processing amid of these 
constrains it is essential to have control on the number of 
useful variables. The field of data mining faces tremendous 
growth in order to meet such excessive computation 
requirements. This lead to the development of some novel 
research areas viz. machine learning, computational 

intelligence etc. that helps in automated data processing, 
thereby yielding relevant observations in various domains. 
Dimensionality reduction is a machine learning technique 
that reduces the data dimensionality with minimal 
information loss before proceeding with the analysis. 
Dimensionality reduction transforms high-dimensional data 
into a meaningful reduced dimension space. The reduced 
representation must have correspondence to the intrinsic 
data dimensionality, i.e. the minimum number of 
parameters that can define the observable properties of data. 
The primary focus of dimensionality reduction is 
redundancy reduction and intrinsic structure discovery. It is 
also applied for feature extraction, data visualization, 
computation and machine learning purposes. 
Dimensionality reduction is normally considered as a data 
pre-processing step. The main challenge here is that the 
transformation should be done with minimal information 
loss and also need to preserve the structure of the data. 
Various techniques have been proposed in this regard which 
either transforms the existing features into a new reduced 
set of features or selects a subset of the existing features. 
Dimensionality reduction techniques can be widely 
classified as linear and nonlinear techniques. Linear 
dimensionality reduction transforms the data to a low 
dimension space as a linear combination of the original 
variables. This is applicable when the data lies in a linear 
subspace and here the original variables are replaced by a 
smaller set of underlying variables. Nonlinear 
dimensionality reduction is applied when the original high 
dimensional data contains nonlinear relationships. Here the 
lower dimensional representation of the data is achieved 
while preserving the original distances between the data 
points. This paper discusses some of the linear and 
nonlinear dimensionality reduction techniques which are 
widely used in a variety of applications. These include 
Principal Component analysis (PCA), Independent 
Component Analysis (ICA), Canonical Correlation 
Analysis (CCA), Singular Value Decomposition (SVD), 
CUR Matrix Decomposition, Compact Matrix 
Decomposition (CMD), Non Negative Matrix Factorization 
(NMF), Linear Discriminant Analysis (LDA), Kernel PCA, 
Multidimensional Scaling (MDS), Isomap, Locally Linear 
Embedding (LLE), Laplacian Eigen map, Local Tangent 
Space Alignment (LTSA) and Fast map. The linear 
techniques discussed here mostly adopt concepts from 
linear algebra for performing dimensionality reduction. 
Linear techniques may fail in effectively handling data that 
has nonlinear relationships. Real world applications mostly 
generate nonlinear data, which can be dealt with nonlinear 
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reduction techniques. In fact dimension reduction reduces 
the computational complexity of the problem and also 
increases the accuracy of data analysis. 

II. DIMENSION REDUCTION 

Dimension reduction is defined as the mapping of data to a 
lower dimensional space such that uninformative variance 
in the data is discarded, or such that a subspace in which the 
data lives is detected [1]. It is mainly used as data analysis, 
compression and visualization methods. Some major 
techniques used for linear and nonlinear dimension 
reduction is discussed in the subsequent sections. 

A. Principal Component Analysis (PCA) 

PCA is a very established method of linear 
dimensionality reduction. The purpose of PCA is to derive 
new variables that are linear combinations of the original 
variables and are uncorrelated. It finds smaller group of 
underlying variables that describe the data. PCA projects n-
dimensional data onto a lower d-dimensional subspace in a 
way that minimizes the sum of squared error, or maximizes 
the variance, and gives uncorrelated projected distributions 
[2]. In most cases the underlying structure of data will be 
sparse. But PCA often generates dense expressions which 
makes interpretation difficult. It is computed by performing 
eigendecomposition on data covariance matrix, ∑. 
Laplacian matrix and modularity matrix are best suited to 
be used as covariance matrix [3]. The covariance matrix ∑ 
can be decomposed as, 

∑ = U ˄ UT     (1) 

where ˄ is the diagonal matrix that contains the 
eigenvalues in diagonals and U is the matrix that contains 
the corresponding eigenvectors. The eigenvectors obtained 
resembles the principal axes of maximum variance 
subspace, eigenvalues represent the variance of projected 
inputs along principal axes and the number of significant 
eigenvalues denotes the estimated dimensionality. The size 
of the covariance matrix is proportional to the data 
dimensionality which makes eigendecomposition 
computationally expensive for very high dimensional data. 
PCA is simple to compute and guaranteed to produce 
accurate low dimensional representation. But it does not 
yield high accuracy on uncorrelated data [4]. 

B. Independent Component Analysis (ICA) 

ICA assumes the latent variables to be mutually 
independent and they are called the independent 
components of the observed data. It is superficially related 
to principal component analysis and a more powerful 
technique. ICA is well suited for separating superimposed 
signals. It applies linear transformation to decompose the 
original data into components that are maximally 
independent from each other. It is not necessary that the 
independent components are orthogonal to each other. For 
dimension reduction, ICA finds k components that 
effectively capture variability of the original data [5]. It 
decomposes the data matrix A of size t × d into two 
matrices such that  

At×d = Ct×k.Fk×d    (2) 
where C is the coefficient matrix and F contains the 
independent components. ICA guarantees accuracy in case 

of uncorrelated data but the independent components 
obtained may not be relevant. 

C. Singular Value Decomposition (SVD) 

SVD is used to reduce a large matrix into significantly 
small matrix. It produces the best rank k approximation of 
the matrix. Let X is an m × n rank r matrix. Let σ1…σr be 
the eigenvalues of a matrix √்ܺܺ. Then there are 
orthogonal matrices, U = (u1, ...ur) and V = (υ1, ... υr), 
whose column vectors are orthonormal and a diagonal 
matrix S = diag(σ1, σr)[6]. The decomposition X = USVT is 
called singular value decomposition of a matrix X and 
numbers σ1 ….σr  are singular values of matrix X. The 
columns of VT defines the new axes, the rows of U 
represents the coordinates of the objects in the space 
spanned by the new axes and  is the scaling factor 
indicating the relative importance of each new axis. The 
SVD of X have at most r non-zero singular numbers, where 
rank r is the smaller of the two matrix dimensions. From 
that only k greatest singular values are taken to create a k-
reduced singular decomposition of X. SVD produces 
optimal low rank approximation with minimal 
reconstruction error. The individual components of the 
actual data are not interpretable in terms of the resultant 
matrices. The output of SVD is always dense even if the 
input provided is sparse. 

D. CUR Matrix Decomposition 

Modern datasets are often represented by large matrices 
which provides a natural structure for encoding 
information. Analysis of such data requires the construction 
of a compressed matrix representation that is easier to 
analyze and interpret. Principal components analysis and, 
the Singular Value Decomposition are fundamental data 
analysis tools that express a data matrix in terms of a 
sequence of orthogonal or uncorrelated vectors of 
decreasing importance. But, being linear combinations of 
up to all the data points, these vectors are difficult to 
interpret in terms of the data and processes generating the 
data. 

CUR decompositions are low rank matrix 
decompositions that are explicitly expressed in terms of a 
small number of actual columns and/or actual rows of the 
data matrix. An m × n matrix A, is decomposed as a product 
of three matrices, C, U, and R, where C consists of a small 
number of actual columns of A, R consists of a small 
number of actual rows of A, and U is a small carefully 
constructed matrix that guarantees that the product CUR is 
close to A. The extent to which A ≈ CUR can be used in 
place of A or Ak (best rank-k approximation of the data 
matrix A) in data analysis tasks, depends on the choice of 
C and R, as well as on the construction of U [7].  

Since they are constructed from actual data elements, 
CUR decompositions are interpretable by practitioners of 
the field from which the data are drawn. The chosen 
columns and rows are those that exhibit high statistical 
leverage. By selecting columns and rows in this manner, 
the relative error is improved and also they can be 
employed for exploratory data analysis. Moreover, the 
actual data elements are easily interpretable from the 
reduced data representation. CUR preserves the sparsity 
property, i.e. it produces a sparse result for a sparse input 
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data matrix. The problem with CUR is that since the 
columns and rows are generated based on random 
sampling, there is a chance for the duplicate entries to be 
present in the outcome. The existing CUR algorithms 
require many columns and rows to be chosen, which 
increases the computation complexity and hence makes it 
impractical for large scale matrices. 

E. Compact Matrix Decomposition (CMD) 

The author [8] proposes a novel matrix decomposition 
technique for large sparse graphs. Several important 
applications such as research citation network analysis, 
social network analysis, regulatory networks in genes etc. 
can be modeled as large sparse graphs. Low rank 
decompositions, such as SVD and CUR, are powerful 
techniques for revealing latent variables and associated 
patterns from high dimensional data. These methods often 
ignore the sparsity property of the graph, and hence usually 
incur too high memory and computational cost to be 
practical. Compact Matrix Decompositions (CMD) can 
analyze static as well as dynamic graphs and can be used 
for high speed applications. CMD approximates a matrix A 
of size m×n as the product of three matrices CsU Rs, where 
Cs and Rs contains scaled columns (rows) sampled from A, 
and U is a small dense matrix which can be computed from 
Cs and Rs. CMD selects columns and rows from input 
matrix A as CUR does and the duplicate entries are 
carefully removed. Thus it reduces both the storage space 
required as well as the computational effort. It scales up the 
columns that are sampled multiple times while removing 
the duplicates. CMD computes sparse low rank 
approximations and provides equivalent decomposition as 
CUR, but requires less space and computation time and 
hence it is more efficient. Extension of CMD, with careful 
sampling, and fast estimation of the reconstruction error, 
can be used to spot anomalies. CMD is the best cost 
effective method with respect to time and space complexity.  

F. Non Negative Matrix Factorization (NMF)  

NMF produces non negative basis vectors which creates 
a parts-based representation. Basis vectors contain no 
negative entries and allow only additive combinations of 
the vectors to reproduce the original [9]. The perception of 
the whole becomes a combination of its parts represented 
by these basis vectors. It works under the assumption that 
the data and components are all non-negative. The 
representations produced by NMF are additive vectors, 
obtained by superimposing components which are efficient 
for image and text representation. NMF factorizes the data 
matrix A as A = W.H where W is the t × k matrix whose 
columns contain the basis vector and H is the k×d matrix 
contains the weights used to approximate the columns in A 
with the corresponding basis vectors from W [5]. It retains 
more localized patterns but consumes huge amount of 
memory for large matrices. 

G. Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis performs dimensionality 
reduction on multi-class data. It is a supervised learning 
technique which generates a single linear projection that 
maximizes the separation among classes. The input data is 
projected to a subspace consisting of the most discriminant 
directions. The objective of LDA is to perform 
dimensionality reduction while preserving as much of the 

class discriminatory information as possible [10]. It can be 
viewed as a pre-processing step for pattern classification 
and machine learning applications. LDA applies 
eigendecomposition on the dataset and the computed 
eigenvectors are stored in a set of scatter matrices viz. 
between-class scatter matrix and within-class scatter matrix. 
The corresponding eigenvalues denote the length or 
magnitude of the eigenvectors. If all eigenvalues are 
observed to have similar magnitude, then it can be inferred 
that the data is projected on a good feature space. In general 
the eigenvectors associated with the largest eigenvalues are 
selected, as they convey significant information about the 
data distribution.  

LDA is performed as a 5 step process [11]: 

1. Compute the d-dimensional mean vectors, mi for the 
different classes from the dataset. 

2. Compute the scatter matrices: 

(a) Within Class Scatter Matrix: 

Sw = ∑ ܵ

ୀଵ     (3) 

where Si is the scatter matrix for every class. 

(b) Between Class Scatter Matrix: 

SB = ܰ݅ሺ݉	 െ 	݉ሻሺ݉݅	 െ 	݉ሻܶ


ୀଵ
  (4) 

where m is the overall mean and Ni is the size of each 
class. 

3. Solve the generalized eigenvalue problem for the matrix 

ܵ௪ିଵSB 

The eigenvectors and eigenvalues convey information 
about the distortion of the linear transformation. 
Eigenvectors represent the direction and eigenvalues 
denote the magnitude of distortion. Resultant 
eigenvectors form the new axes of the new feature 
space.  

4.  Select the linear discriminants for the new feature space. 
This is done by sorting the eigenvectors with respect to 
descending order of eigenvalues and chooses k 
eigenvectors with largest eigenvalues, thereby 
construct eigenvector matrix Wd×k. 

5.  Transforming the samples onto the new subspace via the 
equation Y = X ×W, where X is n × d matrix, ith row 
representing ith sample and Y is the n × k transformed 
matrix.  

H. Multidimensional Scaling 

If the pairwise distance between pairs of points is 
provided, MDS preserves the distance by projecting the 
points to a low dimension space, such that the pairwise 
distances in the reduced space are kept, maximum close to 
that of original space. This constructs a configuration of 
points in a Euclidean space from information about inter-
point distances [12]. There are two variations for MDS, 
both are based on similar principles. The difference lies in 
the metrics used and calculations performed. The distance 
matrix representing the distances between pairs of objects 
acts as input for MDS. The distance matrix representation 
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in required dimension represents the distance between data 
points in the reduced dimension ݀ , approximately equal 
to the actual distance according to the distance matrix δij. 
MDS constructed distances are called disparities. The 
relationship between actual data distances and disparities 
can be linear (classical/metric) or monotonic (non metric). 
Classic solution is optimal when the distance matrix 
represents the Euclidean distance between pairs of points. 
For performing nonlinear dimensionality reduction, non-
metric MDS uses distances that can be interpreted in an 
ordinal sense. The effectiveness of the method is estimated 
based on the difference between actual distances and their 
predicted values. This measure is called stress.  

Stress =ඨ
∑ቀௗೕିௗೕ

^ ቁ
మ

∑ௗೕ
మ    (5) 

MDS starts by assuming an initial configuration of N 
objects by setting up t dimensional coordinates for each 
object. The following steps are performed and repeated 
until stress is reduced [13].  

• The Euclidean distances between each pair of objects 
are computed, denoted as ݀ . 

• Perform a linear, polynomial or monotonic regression 
of ݀ on actual distance provided, δij. The predicted 
distances obtained after regression are called disparities, 
݀
^

 

• Stress is computed to evaluate the goodness of fit 
between the predicted and actual distances.  

• The coordinates of objects are reassigned so as to 
reduce the value of stress. 

MDS is an easy to implement technique which produces 
relatively precise solution. Classical MDS is not an accurate 
distance preserving method; also it cannot achieve 
nonlinear dimension reduction. Non metric MDS designed 
for nonlinear dimension reduction may generate solutions 
that involve local optima. 

I. Kernel PCA 

Kernel PCA is an extension to PCA for performing 
nonlinear dimension reduction. While PCA works on the 
linear input space, Kernel PCA works on the linear feature 
space transformed from a nonlinear feature space using a 
kernel function [14]. The kernel function is used to create a 
kernel matrix which is equivalent to the inner product of the 
high dimensional data points. Any symmetric positive 
definite matrix can be regarded as kernel matrix. Kernel 
PCA achieves dimensionality reduction by performing 
eigendecomposition on the kernel matrix. It selects the most 
significant eigenvectors and eigenvalues of the kernel 
matrix to produce the low dimensional representation of the 
data objects. The idea here is to map the nonlinear data to a 
higher dimensional space where it becomes linearly 
separable. The nonlinear mapping function is called the 
kernel function [15] and the mapping of a sample x is in the 
form,	࢞	 → ϕሺ࢞	ሻ. The kernel function calculates the dot 
product of the images of the samples x under ߶. 

,࢞൫ߢ ൯࢞ ൌ ߶ሺ࢞ሻ்߶൫࢞൯   (6) 

The steps involved in Kernel PCA are [16]: 

1. Compute the kernel matrix, ܭ = ߢ൫࢞,  .൯࢞

2. Center the kernel matrix, ܭ ൌ ܭ െ	1ேܭ െ 1ேܭ 
1ே1ܭே where 1ே is a N square matrix for which ሺ1ேሻ = 
ଵ

ே
	; ∀	߳[1, ...,N]. 

3. Diagonalize ܭ and normalize eigenvectors:  
 λk (α

k . αk) = 1 

4. Extract the k first principal components:  

 ߶	ሺ࢞ሻ
  = ∑ ߙ

ே
ୀଵ ሺ߶	ሺ݅࢞ሻ. ߶ሺ࢞ሻሻ 

The main advantage here is that KPCA can select the kernel 
function used, which can normally be linear, polynomial 
and gaussian kernel. The principal components can be 
efficiently computed in high dimensional feature space 
using kernels. 

J. FastMap 

Fastmap is used to generate a low dimensional 
representation of high dimensional data. As with MDS, it 
takes the distance matrix of N objects as input, and applies 
the cosine law to compute the low dimensional coordinates 
of the N objects. Given a high dimensional data X of m 
dimensions and N objects, it uses a distance function to 
compute the distance matrix SN×N [17]. The method 
assumes that the objects are points in some n-dimensional 
space that needs to be projected on k mutually orthogonal 
directions. The projections are computed using the distance 
matrix. For that it selects two objects ܱ and ܱ with larger 
distances as pivot objects and the objects are projected on a 
line that passes through the pivot objects in n-dimensional 
space. The projection of objects on that line is computed 
using the cosine law. 

 

Figure 1: Projection on line ܱܱ  

 
The first dimension coordinate of object ୧ܱ is computed 
using the cosine equation: 
   

ݔ  = 
ௗೌ,
మ ାௗೌ,್

మ ିௗ್,
మ

ௗ,
    (7) 

 
where ݀,is the distance between pivot object ܱ and 
object ܱ, ݀, is the distance between pivot object ܱ and 
object ܱ and ݀, is the distance between pivot objects ܱ 

Sumithra V.S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2354-2360

www.ijcsit.com 2357



and ܱ. Once the coordinates of N objects are obtained, a 
reduced distance matrix S’ of N objects is computed as, 
  

d’( ܱ,	 ܱ)
2 = d( ܱ,	 ܱ)

(ݔ-ݔ) – 2
2 

  (8) 
 
where d’ is the distance in reduced distance matrix ܵேൈே

ᇱ  
and d is the distance in SN×N. From the reduced distance 
matrix a new set of pivot objects can be selected to 
compute the coordinates of objects in the second 
dimension using equation(7). This process is repeated k 
times until the k dimensional representation of the data is 
obtained. Thus Fastmap algorithm determines the 
coordinates of N objects on a new axis, after each of the k 
recursive calls [18]. It is an efficient way of dimensionality 
reduction which tries to find the axes where the range or 
spread of data is maximum. Fastmap retains the cluster 
structure of original data in the 
reduced representation. It finds application in efficient 
retrieval of data and data visualization.  

K. Isomap 

Isomap is a variant of MDS which uses the concept of 
geodesic distances between data points rather than 
Euclidean distances. It is a global method that produces a 
low dimensional embedding by preserving the pairwise 
distances between data points. Given n data points and 
associated distance matrix D, Isomap generates the reduced 
representation by performing eigendecomposition of the 
matrix D. Isomap algorithm has three steps:  

1. Build the k nearest neighbor graph of the manifold based 
on the distance between pair of points in the input space. 

2. Construct the distance matrix by estimating the geodesic 
distance between all pairs of points using graph shortest 
path distance algorithm. 

3. Find a low dimensional embedding by performing 
eigenvalue decomposition on the distance matrix.  

As PCA and MDS guarantees to recover the true structure 
of linear manifolds if sufficient data is available, Isomap is 
guaranteed asymptotically to recover the true 
dimensionality and geometric structure of a strictly larger 
class of nonlinear manifolds [19]. It preserves the global 
structure and transforms the original data to the new 
coordinate system defined by the most significant 
eigenvectors. 

L. Locally Linear Embedding 

Locally Linear Embedding is a nonlinear dimensionality 
reduction technique that produces low dimensional locality 
preserving embedding of high dimensional data. It exploits 
the local symmetries of the linear reconstruction for 
discovering nonlinear structure in high dimensional data. 
LLE maps its input to a single global coordinate system of 
low dimensionality and it do not involve local minima [20]. 
If the input data is in the form of d dimensional vectors Ԧܺ, 
LLE starts by computing the neighbors of each data 
point	 Ԧܺ. The points along with the neighbors are assumed 
to lie on a locally linear are of the manifold, characterized 
by linear coefficients that can reconstruct each data point 
from its neighbors [20]. The reconstruction errors are 
measured using the following equation:  

߳ሺܹሻ ൌ 	∑ ൫ห Ԧܺ െ ∑ ܹ Ԧܺ ห൯
ଶ

   (9) 

where ܹ is the weight that describe the contribution of the 
jth data point to the ith reconstruction. The weights that best 
reconstruct each data point are computed such that, each 
data point is only reconstructed from its neighbors. They 
characterize the intrinsic geometric structure of the dataset. 
The data vector Ԧܺ is mapped to low dimensional space by 
computing d dimensional coordinates ሬܻԦ that minimizes the 
cost function, 

Φሺܻሻ= ∑ ൫หሬܻԦ െ ∑ ܹ ܻ ห൯
ଶ

   (10) 

The low dimensional vectors ሬܻԦ are best reconstructed 
by the weights ܹ, by minimizing the cost function in 
equation (10). 

The reconstruction weights are computed from the local 
neighborhoods of data points whereas the low dimensional 
embedding is computed using eigendecomposition. The 
various dimensions in the reduced dimension space are 
iteratively computed using the eigenvectors one at a time. 

M. Laplacian Eigenmaps 

Laplacian Eigenmaps is a geometric algorithm for high 
dimensional data representation. It relies on spectral 
techniques for performing dimensionality reduction. The 
method first constructs a graph that incorporates 
neighborhood information of the dataset [21]. Then the 
graph Laplacian is used to generate a reduced 
representation that preserves the local neighborhood 
characteristics. The graph Laplacian is an ideal 
representation of the network that can intuitively explains 
the network structure. It computes the eigenvalues and 
eigenvectors for the generalized eigenvalue problem: Lf = 
λDf. Laplacian matrix is a symmetric, positive semi definite 
matrix which has real and non-negative eigenvalues. The 
smallest eigenvalue of L is 0 and the corresponding 
eigenvector is the constant 1 vector. The multiplicity of the 
eigenvalue 0 is equal to the number of connected 
components of the graph G. The eigenvector corresponding 
to the smallest eigenvalue of the Laplacian matrix results in 
a trivial partition of the network. The eigenpairs obtained as 
a result of eigendecomposition on graph Laplacian captures 
significant topological information about the network [22]. 
The eigenvectors, f0, ....fk-1 are ordered with respect to their 
eigenvalues. The eigenvector associated with eigenvalue 0 
is neglected and the next m significant eigenvectors are 
selected for embedding in m dimensional Euclidean space. 
Laplacian Eigenmap provides a computationally efficient 
approach to nonlinear dimensionality reduction. It finds a 
low dimensional representation by preserving the local 
properties of the manifold. 

N. Local Tangent Space Alignment 

LTSA is a manifold learning method that transforms a 
nonlinear embedding of high dimensional data into a 
reduced dimensional space and also reconstruct the high 
dimensional 
coordinates from the reduced representation. This is similar 
to LLE, but rather than projecting the points to a locally 
linear neighborhood, LTSA make uses of the tangent space 
of each data point and align those local tangent spaces to 
construct the embedding. It assumes that for each data point 
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in the high dimensional space, there exist a linear mapping 
to its local tangent space and vice versa. The steps for 
performing LTSA are similar to LLE which includes 
nearest neighbor search, weight matrix construction and 
partial eigendecomposition. For nonlinear dimensionality 
reduction, the local linear structures of data points are 
exploited to obtain a global nonlinear structure. LTSA 
considers tangent space, constructed from the neighborhood 
of a point as the local geometric information. The local 
tangent space provides a low-dimensional linear 
approximation of the local geometric structure of the 
nonlinear manifold [23]. The local tangent spaces are all 
aligned using appropriate transformation function to obtain 
a global non 
linear embedding in the reduced dimension space. LTSA 
begins with the extraction of local information by 
determining k nearest neighbors of the data point [23]. The 
local information of a data point is calculated by 
performing eigendecomposition on the correlation matrix of 
the data neighborhood. The d largest eigenvectors obtained 
are centered to form the local information matrix. Then this 
local information has to be properly aligned to form a 
global solution. All local information matrices are 
iteratively added up to form the alignment matrix. The final 
step is the alignment of global coordinates. The low 
dimensional embedding is provided by the smallest d+1 
eigenvectors of the alignment 
matrix, discarding the one associated with the smallest 
eigenvalue. LTSA focus to minimize the distance between 
points in the tangent space and the reduced dimension 
space. The solution to this minimization problem is 
provided by the d smallest eigenvectors of the alignment 
matrix [24]. LTSA performs eigendecomposition on a per 
point basis, rather than applying on the entire sparse matrix 
which highly reduces the computational complexity. It is 
fast as well as adaptive to complex nonlinear manifolds. 

CONCLUSION 

Dimension reduction is a popular research area which 
has gained focus due to its significance in high dimensional 
data analysis. It decreases the computational load and 
extract better quality features from data, hence find 
application in many areas. A variety of linear/nonlinear 
techniques are proposed for dimensionality reduction 
depending on the nature of the domain of interest. PCA is 
the oldest and most common approach used for 
dimensionality reduction. It is easy to compute and 
guaranteed to produce accurate low dimensional 
representation. For PCA to be effective the data elements 
should be related to each other, it performs poor in the case 
of uncorrelated data. Even though PCA produces accurate 
low rank embedding, the numerous principal components 
generated are difficult to interpret. ICA guarantees accuracy 
in the case of uncorrelated data since it operates on 
independent components of data. The problem may arise 
here is that the independent components generated may not 
be relevant to the context. With SVD, it produces the best 
rank-k approximation with minimum reconstruction error. 
The vectors formed in SVD may lack any meaning in terms 
of the field from which data is drawn. Also it does not take 
into account the sparse nature of input data. NMF is 
considered to be interpretable, as it produces parts based 
representation and retains more localized patterns. The 

drawback is that it might consume huge amount of memory 
for processing if the input matrix is large. CUR and CMD 
eliminated the interpretability problem by selecting 
columns and rows from actual data. They also preserve the 
sparsity property and yields accurate outcomes. CMD is 
considered to be the best cost effective method as it scales 
up the duplicate columns/rows produced by CUR. These 
are lossy methods that randomly select columns and rows to 
compute a low dimension representation. Hence there isn’t 
any guarantee that it retains the intrinsic properties and 
structure of the original data in the reduced embedding. 
LDA performs dimensionality reduction by considering 
class discriminatory information. It finds directions along 
which the classes are best separated whereas PCA finds 
axes of maximum variance. Instead of a covariance matrix, 
LDA uses a within-scatter matrix of all c classes and a 
between-scatter matrix [25].  
Kernel PCA is the nonlinear variant of PCA for performing 
nonlinear dimensionality reduction. The performance of 
Kernel PCA depends on the selection of appropriate kernel 
function which requires prior knowledge about the data. 
MDS has two variations metric and non-metric MDS that 
performs linear and nonlinear dimensionality reduction 
respectively. It is simple and relatively easy to implement 
method. MDS is very useful for data visualization and are 
able to uncover hidden structures in the data, but it has a got 
numerous limitations. There are chances for MDS to 
generate suboptimal or degenerate solutions, also probable 
to produce meaningless output. Isomap, LLE, Fastmap etc. 
are variations of MDS that eliminates its limitations and 
result in more effective solutions. Fastmap [18] is 
developed as an alternative to MDS, produces fast and 
efficient mapping of high dimensional data to low 
dimensional spaces. It provides distance preserving 
projections. Here, different pairs of pivot objects can be 
randomly selected to produce different projections of the 
data. It is highly scalable and can effectively handle large 
data sets.  

LLE generates highly nonlinear embedding where the 
local topography is preserved by linear neighborhood 
relations rather than by the pairwise distances. Isomap 
shares many of the properties of LLE which performs 
nonlinear dimensionality reduction by preserving the 
geodesic distances between pairs of data points. Laplacian 
Eigenmap produces a low dimensional embedding by 
taking into account the structure of the manifold on which 
the data may possibly reside [21]. Isomap is a global 
method that takes into account distances between all pairs 
of points in the nearest neighbor graph. LLE and Laplacian 
Eigenmap are local methods that consider only the local 
neighborhood structures for mapping. LTSA computes the 
local tangent planes around each data point and all such 
tangent planes are aligned to produce the low dimensional 
embedding. LLE, LTSA and Laplacian Eigenmap operate 
on sparse matrices that save the computational complexity. 
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